A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
نویسندگان
چکیده
To examine whether a BMP signaling pathway functions in specification of cell fates in sea urchin embryos, we have cloned sea urchin BMP2/4, analyzed its expression in time and space in developing embryos and assayed the developmental consequences of changing its concentration through mRNA injection experiments. These studies show that BMP4 mRNAs accumulate transiently during blastula stages, beginning around the 200-cell stage, 14 hours postfertilization. Soon after the hatching blastula stage, BMP2/4 transcripts can be detected in presumptive ectoderm, where they are enriched on the oral side. Injection of BMP2/4 mRNA at the one-cell stage causes a dose-dependent suppression of commitment of cells to vegetal fates and ectoderm differentiates almost exclusively as a squamous epithelial tissue. In contrast, NOGGIN, an antagonist of BMP2/4, enhances differentiation of endoderm, a vegetal tissue, and promotes differentiation of cells characteristic of the ciliated band, which contains neurogenic ectoderm. These findings support a model in which the balance of BMP2/4 signals produced by animal cell progeny and opposing vegetalizing signals sent during cleavage stages regulate the position of the ectoderm/ endoderm boundary. In addition, BMP2/4 levels influence the decision within ectoderm between epidermal and nonepidermal differentiation.
منابع مشابه
Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
The HE gene is the earliest strictly zygotic gene activated during sea urchin embryogenesis. It is transiently expressed in a radially symmetrical domain covering the animal-most two-thirds of the blastula. The border of this domain, which is orthogonal to the primordial animal-vegetal axis, is shifted towards the animal pole in Li+-treated embryos. Exogenous micromeres implanted at the animal ...
متن کاملLineage and fate of each blastomere of the eight-cell sea urchin embryo.
A fluoresceinated lineage tracer was injected into individual blastomeres of eight-cell sea urchin (Strongylocentrotus purpuratus) embryos, and the location of the progeny of each blastomere was determined in the fully developed pluteus. Each blastomere gives rise to a unique portion of the advanced embryo. We confirm many of the classical assignments of cell fate along the animal-vegetal axis ...
متن کاملAnimal-vegetal axis patterning mechanisms in the early sea urchin embryo.
We discuss recent progress in understanding how cell fates are specified along the animal-vegetal axis of the sea urchin embryo. This process is initiated by cell-autonomous, maternally directed, mechanisms that establish three unique gene-regulatory domains. These domains are defined by distinct sets of vegetalizing (beta-catenin) and animalizing transcription factor (ATF) activities and their...
متن کاملCa2+ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral–aboral axis formation in early sea urchin embryos
Sea urchin embryos initiate cell specifications at the 16-cell stage by forming the mesomeres, macromeres and micromeres according to the relative position of the cells in the animal-vegetal axis. The most vegetal cells, micromeres, autonomously differentiate into skeletons and induce the neighbouring macromere cells to become mesoendoderm in the β-catenin-dependent Wnt8 signalling pathway. Alt...
متن کاملbeta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events alo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 127 5 شماره
صفحات -
تاریخ انتشار 2000